

Innovation for Our Energy Future

Recent progress and future potential for concentrating photovoltaic power systems

Sarah Kurtz, Allan Lewandowski, and Herb Hayden*

National Renewable Energy Laboratory, Golden, Colorado

*Arizona Public Service, Phoenix, AZ

World Renewable Energy Congress Denver, Colorado, September 1, 2004

NREL is operated by Midwest Research Institute - Battelle

Outline

- Is there a role for fields of PV systems?
- APS' experience shows: more electricity is generated by systems installed in fields

- Current status of concentrating PV (CPV)
- The potential for CPV in the future

Is the future of PV limited to building-integrated applications?

Is our goal to install PV or to generate solar electricity?

Today's data reflects > 1 MW

Arizona Public Service (APS)

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

APS is installing megawatts of a variety of PVtechnologies for solar electricity generation

Design of APS study

- Purchase many silicon flat-plate modules
- Install some on rooftops (fixed horizontal or fixed latitude tilt)
- Install some on single-axis trackers in fields

Comparison of solar electricity from fixed and tracked systems

Study for systems installed in Arizona by APS

REL National Renewable Energy Laboratory

Tracked systems deliver more electricity per dollar invested

Are tracked systems better?

- Wrong question
- Rooftop systems should be used to conserve land and place PV near load
- Field systems should be used where land is available and electricity generation is the goal
- Pursuing both will allow PV to grow faster

Many companies are developing **CPV technology!**

Current status of CPV

Solar Systems has installed 200 kW in Australia, is currently installing 750 kW, and are negotiating for 4 MW.

Concentrator costs are coming down

 Solar Systems is currently contracting CPV systems (for installation in the near future) at US\$5.50/Wac with expected annual production of 2700 kWh/kW installed

Current status of CPV

Amonix and Arizona Public Service have installed >570 kW of CPV in Arizona, and plan to install more each year under Arizona's portfolio standard.

Electricity generation is going up - consistently!

REL National Renewable Energy Laboratory

Concentrator performance is consistent and high (data from APS)

Concentrator costs are already competitive despite low-volume

If I invest \$1000 in PV installations, then measure the electricity generated in a year, how much electricity do I get?

Fixed, flat-plate rooftop systems

180 kWh

1-axis tracked, flat-plate systems 380 kWh

Concentrator systems

300 kWh

Data from installations in Arizona, by Arizona Public Service *Concentrator cost is already competitive!*

Cell efficiencies are increasing

Conclusions

- Study of APS systems installed in Arizona showed about twice as much electricity generated for \$ invested for tracked flat-plate systems compared with fixed, rooftop systems
- Makes sense to pursue both rooftop and utility PV markets, in which case CPV may have new opportunity
- CPV systems are being installed at 100s kW/yr
- Multijunction cell efficiencies have reached 37%
- Incorporation of multi-junction cells offer significant
 improvement in system output
- Outlook is bright for this developing technology

